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Abstract
We present a simple approach for finding an N-soliton solution and the
corresponding Jost solutions of the derivative nonlinear Schrödinger equation
with nonvanishing boundary conditions. Soliton perturbation theory based on
the inverse scattering transform method is developed. As an application of the
present theory we consider the action of the diffusive-type perturbation on a
single bright/dark soliton.

PACS numbers: 05.45.Yv, 52.35.Bj, 42.81.Dp

1. Introduction

The derivative nonlinear Schrödinger equation (DNLSE) (α = ±1)

i∂tu + ∂2
xu + iα∂x(|u|2u) = 0 (1)

has many physical applications, and, probably, the most important are in plasma physics and
in nonlinear optic. First, equation (1) describes modulated small-amplitude nonlinear Alfvén
waves in a low-β (the ratio of kinetic to magnetic pressure) plasma, propagating parallel [1–3]
or at a small angle [4, 5, 7] to the ambient magnetic field. The DNLS equation also describes
large-amplitude magnetohydrodynamic waves in a high-β plasma, propagating at an arbitrary
angle to the ambient magnetic field [8]. In these cases, u denotes the transverse magnetic field
perturbation normalized by the ambient magnetic field, where t and x are normalized time
and space coordinates, respectively. Second, the DNLSE is related to the modified nonlinear
Schrödinger equation (MNLSE)

i∂τψ +
σ

2
∂2
ξ ψ + is∂ξ (|ψ |2ψ) + |ψ |2ψ = 0 (2)

by a simple gaugelike transformation [9]

ψ(ξ, τ ) = u(x, t) exp
{ i

4s4
t +

iσ

2s2
x
}

, (3)
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where σ = ±1 corresponds to the abnormal (normal) group velocity dispersion (GVD) region,
ξ = (σx)/(2s) + t/(2s3), τ = (σ t)/(2s2). In turn, the MNLSE describes the propagation
of ultrashort femtosecond nonlinear pulses in optical fibres, when the spectral width of the
pulses becomes comparable with the carrier frequency, and, in addition to the usual Kerr
nonlinearity, the effect of self-steepening of the pulse should be taken into account. In this
case, u is the normalized slowly varying amplitude of the complex field envelope, t is the
normalized propagation distance along the fibre, and x is the normalized time measured in a
frame of reference moving with the pulse at the group velocity.

Equation (1) is completed by the boundary conditions: vanishing (u → 0 as |x| → ∞)
or nonvanishing (|u| → ρ = const as |x| → ∞) at infinity. In both cases, the DNLSE is
integrable by the inverse scattering transform (IST) [10–13], and admits N-soliton solutions
[14].

The nonvanishing boundary conditions (NVBC) are important in physical applications.
For example, in space plasma physics the vanishing boundary conditions (VBC) are relevant
only for the case of propagation of Alfvén waves strictly parallel to the ambient magnetic field.
In nonlinear optics, the NVBC can support propagation of dark solitons in both normal and
abnormal GVD regions [15]. Unlike the nonlinear Schrödinger equation or the DNLSE with
VBC, the DNLSE with NVBC admits simultaneous generation of breathers (solitons with
internal oscillations) and one-parametric (nonoscillating) bright and/or dark solitons [16].

The IST formalism for the DNLSE with NVBC is much more complicated from the one for
VBC. Analytical properties of the Jost solutions in this case are formulated on the Riemann
sheets of the spectral parameter [11], and the corresponding direct and inverse scattering
problems are rather involved. Recently, Chen and Lam [15] developed the IST for the DNLSE
with NVBC by introducing an affine parameter to avoid constructing the Riemann sheets. Both
approaches, however, encounter a difficulty when finding exact explicit N-soliton solutions.
The reason is that the resulting solution u contains the phase factor exp(iη+), where η+ is some
definite integral from |u|2. Thus, the solution is written in an implicit form and only modulus
of the solution can be obtained in that way. Though for simple one-parametric soliton solutions
the phase η+ can be calculated by direct integration, this procedure is obviously impracticable
for N-soliton solutions. Instead, tricks leading to the explicit expression for η+ were used
in some particular cases: for the two-parametric one-soliton breather solution [15], and for
the N-soliton with purely imaginary discrete spectral parameters (i.e. for pure bright and/or
dark solitons) [17, 18]. Another approach based on Darboux/Bäclund transformations was
developed by Steudel [14]. Apparently, Steudel was the first to obtain exact N-soliton solutions
with explicitly calculated phases for the DNLSE with NVBC.

From the practical point of view, the completely integrable DNLSE (1) is an idealized
model. In many physical applications, additional terms are often present in the DNLSE.
They can include effects of the third-order linear dispersion, dissipation, influence of external
forces, etc. These terms violate the integrability, but being small in many important practical
cases, they can be taken into account by perturbation theory. The most powerful perturbative
technique, which fully uses the natural separation of the discrete and continuous (i.e., solitonic
and radiative) degrees of freedom of the unperturbed DNLSE, is based on the IST. While the
IST-based perturbation theory for the DNLSE with VBC was developed long ago [19], the
analogous theory for nonvanishing boundary conditions was absent.

The aim of this paper is twofold. First, we present a relatively simple approach for finding
exact explicit (i.e. with the phase) N +M-soliton (N breathers and M ‘usual’ bright and/or dark
solitons in asymptotics) solutions of the DNLSE with NVBC and show that these solutions
can be obtained without determining the phase factor exp(iη+). Thus, exact exotic solutions,
describing, for instance, collisions between breathers, as well as collisions between pure
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bright/dark solitons and breathers can be written. Simultaneously, unlike the purely algebraic
approach [14] based on Darboux transformation, the corresponding Jost solutions can also
be obtained. A second aim is to present perturbation theory for solitons of the DNLSE with
NVBC. We derive evolution equations for the scattering data (both solitonic and continuous)
in the presence of perturbations. As an application of the present theory we consider the action
of the diffusive-type perturbation on a single bright/dark soliton. Without loss of generality,
we will consider the NVBC in the form

u → ρ exp(±2iθ), as x → ±∞. (4)

We also put α = 1, since the case α = −1 can be obtained from the former by a transformation
x → −x.

The paper is organized as follows. In section 2, we review a theory of the scattering
transform for the DNLSE with NVBC. In section 3, we present the procedure to construct
the general explicit (N +M)-soliton solution. Integrals of motion are obtained in section 4. The
perturbation theory and its application are considered in sections 5 and 6, respectively. The
conclusion is made in section 7.

2. Inverse scattering transform for the DNLSE with NVBC

In this section, we present the theory of the scattering transform for the DNLSE with NVBC,
following [15] with some modifications and specifications. Equation (1) can be written as the
compatibility condition

∂tU − ∂xV + [U,V ] = 0, (5)

of two linear matrix equations (Kaup–Newell pair) [10]:

∂xM(x, t, λ) = UM(x, t, λ), (6)

∂tM(x, t, λ) = V M(x, t, λ), (7)

where λ is a spectral parameter, and

U = −iλ2σ3 + λQ, with Q =
(

0 u

−u∗ 0

)
, (8)

V = −2iλ4σ3 + 2λ3Q − iλ2Q2σ3 + λQ3 − iλQzσ3. (9)

Consider the linear problem (6) for some fixed t. In terms of the matrix U, boundary conditions
(4) can be rewritten as limx→±∞ U(x, λ) = U±(λ), where

U± =
( −iλ2 ρλ e±2iθ

−ρλ e∓2iθ iλ2

)
. (10)

Asymptotic solutions of (6) E± satisfy

∂xE
± = U±E±. (11)

The double-valued function K(λ) = λ
√

λ2 + ρ2 appears in the matrices E±, and the analytical
properties of solutions of equation (6) are formulated on the Riemann surface determined by
the function K(λ). The Riemann surface S consists of two sheets S+ and S− of the complex λ

plane with branch cuts on the image axis from −∞ to −iρ and from iρ to ∞. It is convenient
to introduce an affine parameter ζ by a change of variable [15]

λ(ζ ) = 1

2

(
ζ − ρ2

ζ

)
. (12)
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This transformation maps the sheets S± onto Im ζ > 0 and Im ζ < 0 respectively and the real
axis on the complex λ plane into the real axis on the ζ plane. Under this

E±(x, ζ ) = e± iθσ3

(
1 −iρ/ζ

−iρ/ζ 1

)
e−ik(ζ )σ3x, (13)

where the single-valued function k(ζ ) is determined by

k(ζ ) = 1

2

(
ζ +

ρ2

ζ

)
λ(ζ ). (14)

For Im ζ = 0 denote by M±(x, ζ ) the 2×2 matrix Jost solutions of (6), satisfying the boundary
conditions

M± → E±(x, ζ ), as x → ±∞. (15)

The corresponding integral equation can be obtained from (6) and (15)

M±(x, λ) = E±(x, λ) ∓ iλ
∫ ±∞

x

E±(x − y, λ)Q(y)M±(y, λ) dy. (16)

The matrix Jost solutions M±(x, ζ ) can be represented in the form M− = (ϕ, ϕ̄) and
M+ = (ψ̄, ψ), where ϕ and ψ are independent vector columns. The monodromy matrix
S(ζ ) relates to the two fundamental solutions M− and M+:

M−(x, ζ ) = M+(x, ζ )S(ζ ). (17)

The Jost coefficients are defined by

ϕ = aψ̄ + bψ, (18)

ϕ̄ = −āψ + b̄ψ̄, (19)

so that the monodromy matrix is

S(ζ ) =
(

a(ζ ) −b̄(ζ )

b(ζ ) ā(ζ )

)
, (20)

where aā + bb̄ = 1. Matrices M± and S have the parity symmetry properties

S(ζ ) = σ3S(−ζ )σ3, M±(ζ ) = σ3M
±(−ζ )σ3, (21)

and the conjugation symmetry properties

S(ζ ) = σ2S
∗(ζ ∗)σ2, M±(ζ ) = σ2M

±∗(ζ ∗)σ2, (22)

where σ2 and σ3 are Pauli matrices, so that |a|2 + |b|2 = 1. In addition, since the scattering
problem (6) possesses symmetry with respect to the inversion ζ → ρ2/ζ , the important
involution properties are valid:

M±(x, ρ2/ζ ) = (ζ/ρ)σ3M
±(x, ζ )σ2, (23)

S(ρ2/ζ ) = σ2S(ζ )σ2 = S∗(ζ ∗) (24)

It follows from (17) that

a(ζ ) = �−1(ζ ) det(ϕ, ψ), (25)

where we have introduced the notation

�(ζ) ≡ det M± = 1 + ρ2/ζ 2. (26)
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Columns ϕ(x, ζ ) and ψ(x, ζ ) turn out to be analytically continuable to Im k(ζ ) > 0 (i.e.
to the first and the third quadrants of the complex ζ plane), while ϕ̄ and ψ̄ are analytically
continuable to Im k(ζ ) < 0 (i.e. to the second and the fourth quadrants) [11, 15]. Then, the
coefficient a(ζ ) is analytically continuable to Im k(ζ ) > 0. The analytic function a(ζ ) may
have zeros ζ1, . . . , ζN in the region of its analyticity Im k(ζ ) > 0. Equation (25) then shows
that the columns ψ and ϕ are linearly dependent and there exist complex numbers b1, . . . , bN

such that

ϕ(x, ζj ) = bjψ(x, ζj ), (27)

and, similarly

ϕ̄(x, ζ ∗
j ) = −b∗

j ψ̄(x, ζ ∗
j ). (28)

The standard analysis of (16) yields the asymptotics at |ζ | → ∞

ψ(x, ζ ) e−ik(ζ )x →
(−iu/ζ

1

)
ei(η+−θ) + O(1/|ζ |2), (29)

ϕ(x, ζ ) eik(ζ )x →
(

1

−iu∗/ζ

)
ei(η−−θ) + O(1/|ζ |2), (30)

where

η± = ±1

2

∫ ±∞

x

(ρ2 − |u|2) dx. (31)

As |ζ | → 0, we have

ψ(x, ζ ) e−ik(ζ )x →
(−iρ/ζ

u∗/ρ

)
e−i(η+−θ) + O(1), (32)

ϕ(x, ζ ) eik(ζ )x →
(

u/ρ

−iρ/ζ

)
e−i(η−−θ) + O(1). (33)

It then follows from (25) that asymptotics of a(ζ ) are

a(ζ ) → exp(iη − 2iθ), as |ζ | → ∞ (34)

a(ζ ) → exp(−iη + 2iθ), as |ζ | → 0, (35)

where

η = η+ + η− = 1

2

∫ ∞

−∞
(ρ2 − |u|2) dx. (36)

Zeros of a(ζ ) in the region of its analiticity (i.e. to the first and the third quadrants of the
complex ζ plane) are not independent due to the symmetry properties (21), (22) and (24)
[15]. If ζj is a simple zero of a(ζ ) in the first quadrant, outside the ρ circle, then −ζj (in
the third quadrant), ρ2/ζ ∗

j (in the first quadrant and inside the ρ circle) and −ρ2/ζ ∗
j (in the

third quadrant and inside the ρ circle) are also simple zeros of a(ζ ). There are only two
zeros for each j if ζj lies on the ρ circle: ζj and −ζj . Thus, one can consider zeros ζj lying
only in the first quadrant outside and/or on the ρ circle. These zeros can be parametrized
as ζj = ρ exp(γj + iβj ), where γj � 0 and 0 < βj < π/2. In what follows, we assume
that in the first quadrant M zeros lie on the ρ circle and N zeros lie outside the ρ circle so
that j = 1, . . . ,M + N . Using asymptotics (34), (35) and standard methods of the Hilbert
transform theory [20] in conjunction with properties (21), (22) and (24), one can express the
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coefficient a(ζ ) in terms of its zeros ζj in the first quadrant outside and/or the ρ circle, and
the values of |b(ζ )| on the contour � = [0,−∞] ∪ [0,∞] ∪ [i∞, 0] ∪ [−i∞, 0]

a(ζ ) = ei(η−2θ)

N∏
j=1

(
ζ 2 − ζ 2

j

)
(
ζ 2 − ζ ∗2

j

)
(
ζ 2 − ρ4

/
ζ ∗2
j

)
(
ζ 2 − ρ4

/
ζ 2
j

) M∏
k=1

(
ζ 2 − ζ 2

k

)
(
ζ 2 − ζ ∗2

k

)
× exp

{
1

2π i

∫
�

ln(1 − |b(µ)|2)
µ − ζ

dµ

}
. (37)

Setting ζ = 0 in (37) and comparing with (32), we get

η = 2θ − 2
M∑

k=1

arg ζk − 4
N∑

j=1

arg ζj +
1

4π

∫
�

ln(|a(µ)|2)
µ

dµ. (38)

The potential in the general case is

u(x) = ρ e−2i(η+−θ) − 2ρ e−i(η+−θ)




N∑
j=1

[
cj

ζj

ψ1(x, ζj ) eikj x + i
c∗
j

ρ
ψ∗

2 (x, ζj ) e−ik∗
j x

]

+
M∑

k=1

cj

ζj

ψ1(x, ζj ) eikj x − 1

2π i

∫
�

r(ζ )ψ1(x, ζ )

ζ
eik(ζ )x dζ

}
, (39)

where cj = bj/a
′
j with a′

j = da/dζ |ζ=ζj
. For the compatibility with the second Lax

equation (7), the Jost solutions obtained from (6) should be multiplied by a t-dependent
factor h(ζ, t) = exp[−i�(ζ)t], where �(ζ) = [2λ2(ζ ) − ρ2]k(ζ ) [15]:

ψ̄(x, ζ, t) = h(ζ, t)ψ̄(x, ζ ), ψ(x, ζ, t) = h−1(ζ, t)ψ(x, ζ ), (40)

ϕ(x, ζ, t) = h(ζ, t)ϕ(x, ζ ), ϕ̄(x, ζ, t) = h−1(ζ, t)ϕ̄(x, ζ ). (41)

Dynamics of the scattering data turns out to be trivial

a(ζ, t) = 0, (42)

b(ζ, t) = b(ζ, 0) exp[2i�(ζ)t], (43)

bj (t) = bj (0) exp[2i�(ζj )t]. (44)

3. The Jost solutions and the potential in the reflectionless case

An important particular case is that of the reflectionless (solitonic) potentials u(x) when
b(t, ζ ) ≡ 0 as a function of ζ for some fixed t. It then follows from (37) and (38) that

a(ζ ) =
M∏

k=1

ζ ∗
k

(
ζ 2 − ζ 2

k

)
ζk

(
ζ 2 − ζ ∗2

k

) N∏
j=1

ζ ∗2
j

(
ζ 2 − ζ 2

j

)
ζ 2
j

(
ζ 2 − ζ ∗2

j

)
(
ζ 2 − ρ4

/
ζ ∗2
j

)
(
ζ 2 − ρ4

/
ζ 2
j

) , (45)

which extends to Im ζ 2 < 0 as a meromorphic function. One also sees that ā(t, ζ ) = 1/a(t, ζ ).
Since S(t, ζ ) is diagonal in this case, it can be factorized in such a way, S−(ζ ) = S+(ζ )S(ζ ),
that the Jost solution matrices M± are expressed through a common solution matrix A(x, ζ )

M±(x, ζ ) = A(x, ζ )S±(ζ ), (46)

where

S+ =
(

S+
11 0
0 S+∗

11

)
(47)
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with

S+
11 =

M∏
k=1

ζk(
ζ 2 − ζ 2

k

) N∏
j=1

ζj

ζ ∗
j

(
ζ 2 − ζ 2

j

)(
ζ 2 − ρ4/ζ ∗2

j

) , (48)

and

S− = σ1S
+σ1, (49)

where σ1 is a Pauli matrix. One can see from (47) and (49) that S+(ρ) = S−(ρ) if M is even,
and S+(ρ) = S−(ρ) if M is odd. Therefore, from (46) we get

M+(x, ρ) = (−1)MM−(x, ρ). (50)

On the other hand, since λ = 0 corresponds to ζ = ±ρ, we have from (13) and (16)

M±(x, ρ) = E±(x, ρ) = e± iθσ3

(
1 −i
−i 1

)
. (51)

It then immediately follows from (50) and (51) that θ = 0±πn if M is even, and θ = ±π/2±πn

if M is odd (n is an integer). Thus, we established the following important fact: the total phase
shift 4θ in the N-soliton solution is zero (or an integer times 2π ). Note, that authors of [5, 15]
showed that θ = 0 for the particular case N = 1 considering an explicit, rather a complicated
expression for the one-soliton breather solution. From (46)–(48) and (51) one can also obtain

A(x, ρ) = ρ2N(−σ1)
M

(
1 −i
−i 1

) M∏
k=1

(ζ ∗
k − ζk)

N∏
j=1

[
ρ2

(
ζ ∗2
j + ζ 2

j

) − ρ4 − |ζj |4
]

|ζj |2 . (52)

As follows from (23), (27) and (28) the columns of A(x, ζ ) satisfy the relations

A1(x, ζj ) = bjA2(x, ζj ), (53a)

A2(x, ζ ∗
j ) = −b∗

jA1(x, ζ ∗
j ), (53b)

A1(x, ρ2/ζ ∗
j ) = b∗

jA2(x, ρ2/ζ ∗
j ), (53c)

A2(x, ρ2/ζj ) = −bjA1(x, ρ2/ζj ), (53d)

for all j = 1, . . . ,M + N . For M zeros lying on the ρ circle, equations (53a)–(53d) become

A1(x, ζj ) = bjA2(x, ζj ), (54)

A2(x, ζ ∗
j ) = −bjA1(x, ζ ∗

j ), (55)

where the coefficients bj are real. One can see from (32) and (46) that A(ζ ) is analytical
in the whole ζ plane, except for the point ζ = 0, where the off-diagonal elements of
A(ζ ) exp(ik(ζ )xσ3) have simple pole. Thus, the matrix ζA(ζ ) exp(ik(ζ )xσ3) is analytical
in the whole ζ plane. It then follows from (29) and (46) that diagonal and off-diagonal
elements of the matrix ζA(ζ ) exp(ik(ζ )xσ3) are polynomials in ζ of degrees 4N + 2M + 1 and
4N + 2M , respectively. In addition, from (21) and (46) one sees that the diagonal elements of
A are even in ζ , while the off-diagonal ones are odd. This means that we can write

A(x, ζ ) eik(ζ )xσ3 =
(

A
(0)
11 A

(0)
12 ζ−1

A
(0)
21 ζ−1 A

(0)
22

)
+

L∑
p=1

ζ 2p−1

(
ζA

(p)

11 A
(p)

12

A
(p)

21 ζA
(p)

22

)
, (56)
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where L = 2N + M , and A
(p)
mn are some unknown functions of x. Setting ζ = ρ in (56) and

comparing with (52), one can get(
A

(0)
11 A

(0)
12 ρ−1

A
(0)
21 ρ−1 A

(0)
22

)
+

L∑
p=1

ρ2p−1

(
ρA

(p)

11 A
(p)

12

A
(p)

21 ρA
(p)

22

)
= ρ2N(−σ1)

M

×
(

1 −i

−i 1

)
M∏

k=1

(ζ ∗
k − ζk)

N∏
j=1

[
ρ2

(
ζ ∗2
j + ζ 2

j

) − ρ4 − |ζj |4
]

|ζj |2 . (57)

The unknown coefficients A
(p)
mn(x, t) with p = 0, . . . , L are determined uniquely from (3) and

(57). Indeed, the first row of (3) and (57) is a linear algebraic system of 2L + 2 equations in
2L + 2 unknowns, the coefficients A

(p)

12 and A
(p)

11 with p = 0, . . . , L. Likewise, the second
row of (3) and (57) is the system for determining A

(p)

21 and A
(p)

22 with p = 0, . . . , L. By direct
substitution one can check that (56) is compatible with (6) and (46) if and only if

u(x, t) = iA(L)
12 (x, t)

A
(L)
22 (x, t)

. (58)

This formula reconstructs u(x, t) from the discrete scattering data {ζj (t)}, {bj (t)} in the case
when b(t, ζ ) ≡ 0 and it gives the (N + M)-soliton solution of (1). An explicit form of
the solution can be easily written in terms of the determinants of corresponding matrices.
Equations (46) and (56) determine the (N + M)-soliton Jost solutions.

As the first example, let us consider the simplest case when the function a(ζ ) has one
simple zero ζ1 in the first quadrant of the complex ζ plane on the ρ circle (i.e. M = 1, N = 0)
so that ζ1 = ρ exp(iβ1) with 0 < β1 < π/2. Taking into account equation (44), we have
b1 exp(2ik1x) = ε exp(−z), where z = k0(x − vt − x0) with

k0 = ρ2 sin(2β1), v = 2ρ2 − ρ2 cos(2β1), (59)

and without loss of generality one can set ε = ±1. Determining A
(0)
12 and A

(0)
11 from (57) and

solving a system of two linear algebraic equations for A
(1)
12 and A

(1)
11 from (54), (55), we get

A
(1)
12 = e−iβ1

(e3iβ1 − iε e−z)

(eiβ1 + iε e−z)
, A

(1)
11 = (i + ε eiβ1−z)

ρ(eiβ1 + iε e−z)
. (60)

The one-soliton solution is u(x, t) = iA(1)
12

/
A

(1)
22 , and taking into account the property

A
(j)

22 = A
(j)∗
11 , we have

u(x, t) = ρ

[
1 − 2i cos2 β1

ε sinh(z + iβ1) + i

]
. (61)

The case ε = −1(1) corresponds to bright (dark) soliton. The dark soliton has a lower
intensity at its core than the intensity of the background. The parameters k0 and v in (59)
are the soliton inverse width and the soliton velocity, respectively. In fact, there is only
one parameter β1 characterizing the soliton, and it is usually called a one-parametric soliton
[5]. Amplitudes (with respect to the background, i.e. |max |u| − ρ|) of the bright and dark
solitons are Ab = 2ρ sin β1 and Ad = ρ − ρ|1 − 2 sin β1|, respectively. Dependences of the
amplitudes on the parameter β are shown in figure 1(a). It is interesting to note that the dark
soliton amplitude is a nonmonotonic function of β and the maximum occurs at βcr = π/6.
The dark soliton profiles |u(z)| for different β and ρ = 1 are presented in figure 1(b). The dark
soliton with β = βcr (the curve 1 in figure 1(b)) may be called ‘black’ soliton: the intensity in
the centre of the soliton falls to zero. The corresponding one-soliton Jost solutions can easily
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Figure 1. (a) Bright and dark soliton amplitudes versus the parameter β for ρ = 1. The dotted
line and the solid line up to the bifurcation point correspond to the bright soliton. The solid line
corresponds to the dark soliton. The bifurcation point is at βcr = π/6 and |u0| = ρ. (b) Dark
soliton profiles for different β and ρ = 1. Curves 1 (‘black’ soliton), 2 and 3 correspond to
βcr = π/6, β = 0.3 and β = 1.1, respectively.

be obtained from equations (41), (46) and (56)

ψ̄1(x, ζ, t) = e−ik(ζ )xζ1

(ζ 2 − ζ 2
1 )

[
2ρ sin β1 + (ζ 2 − ρ2)A

(1)
11

]
h(ζ, t), (62)

ψ1(x, ζ, t) = eik(ζ )xζ ∗
1

ζ(ζ 2 − ζ ∗2
1 )

[
2iρ2 sin β1 + (ζ 2 − ρ2)A

(1)
12

]
h−1(ζ, t), (63)

ϕ1(x, ζ, t) = e−ik(ζ )xζ ∗
1

(ζ 2 − ζ ∗2
1 )

[
2ρ sin β1 + (ζ 2 − ρ2)A

(1)
11

]
h(ζ, t), (64)

ϕ̄1(x, ζ, t) = eik(ζ )xζ1

ζ(ζ 2 − ζ 2
1 )

[
2iρ2 sin β1 + (ζ 2 − ρ2)A

(1)
12

]
h−1(ζ, t). (65)

The remaining Jost solutions can be found from the symmetry properties (21), (22) and (23)

ψ2 = ψ̄∗
1 , ψ̄2 = −ψ∗

1 , ϕ̄2 = ϕ∗
1 , ϕ2 = −ϕ̄∗

1 . (66)

Next we write out solutions for two more cases: the case when a(ζ ) has two simple zeros in
the first quadrant on the ρ circle (i.e. M = 2, N = 0) so that

ζ1 = ρ exp(iβ1), ζ2 = ρ exp(iβ2), (67)

and the case when a(ζ ) has one simple zero in the first quadrant outside the ρ circle (i.e.
M = 0, N = 1)

ζ1 = ρ exp(γ1 + iβ1), γ1 > 0. (68)

Case (67) corresponds to a two-soliton solution for the one-parametric solitons, while case (68)
corresponds to a two-parametric one-soliton solution. In both cases, we need to solve a system
of four linear algebraic equations. Under this, the corresponding minors and determinants can
be factorized and some parts of them are cancelled so that the resulting expressions for u can
significantly be simplified. The solutions are of the form

u = ρ
BD

D∗2
, (69)
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where for the case (67)

B = 1 − iε1 e−3iβ1−z1 − iε2 e−3iβ2−z2 − ε1ε2
sin2(β1 − β2)

sin2(β1 + β2)
e−3i(β1+β2) e−z1−z2 , (70)

D = 1 − iε1 eiβ1−z1 − iε2 eiβ2−z2 − ε1ε2
sin2(β1 − β2)

sin2(β1 + β2)
ei(β1+β2) e−z1−z2 , (71)

where z = k0,j (x − vj t − x0,j ) (j = 1, 2) with

k0,j = ρ2 sin(2βj ), vj = 2ρ2 − ρ2 cos(2βj ), (72)

and, as before, εj = −1(1) corresponds to bright (dark) soliton. Equations (69), (70) and (71)
describe collisions between bright/dark and bright/dark solitons. It seems that expression
(69) also holds for the general N-soliton solution (this form has already been anticipated in
[17]), but we were not able to prove this rigorously.

For the case (68), we get

B = sinh 2γ1 cosh(z + 2γ1 + 3iβ1 − ln sinh 2γ1) + sin 2β1 sinh(3γ1 − iϕ), (73)

D = sinh 2γ1 cosh(z + 2γ1 − iβ1 − ln sinh 2γ1) − sin 2β1 sinh(γ1 + iϕ), (74)

with

z = k0(x − vt − x0), ϕ = µ(x − wt) + ϕ0, (75)

k0 = ρ2 cosh 2γ1 sin 2β1, µ = ρ2 sinh 2γ1 cos 2β1, (76)

v = 2ρ2 − ρ2 cos 2β1
cosh 4γ1

cosh 2γ1
, w = 2ρ2 − ρ2 cosh 2γ1

cos 4β1

cos 2β1
. (77)

The two-parametric soliton given by (69), (73) and (74) with the parameters γ1 and β1 is
actually a breather (oscillating soliton) with period

T = 2π

ρ2 tanh(2γ1)[cosh2(2γ1) + cos2(2β1)]
, (78)

and with velocity v given by (77). If γ1 → 0 and ϕ0 �= nπ (n is an integer), we have T → ∞
and the breather reduces to the one-parametric soliton (bright or dark, depending on ϕ0) given
by (61). The found soliton solutions perfectly coincide with those obtained in [15, 17]. Shifts
of soliton positions due to collisions for case (67) were analytically obtained in [17].

4. Integrals of motion

Being completely integrable, the DNLSE with NVBC has an infinite set of integrals of motion.
Eliminating ϕ2 from (6), and substituting

ϕ1 = exp{−iθ − ik(ζ )x + iη−(x) + q(x, ζ )}, (79)

into the resulting equation for ϕ1, we get the Riccati equation for the function f =
i(ρ2 − |u|2)/2 + ∂xq

∂xf + (f − ik)2 − u′

u
(f − ik) + λ2

(
|u|2 − i

u′

u
+ λ2

)
= 0, (80)

where u′ ≡ ∂xu. Representing

f (x, ζ ) = 1

i

∞∑
n=0

fn(x)

ζ 2n
, (81)
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and substituting (81) into (80), one can successively determine the coefficients fn(x). The
first few of them are

f0 = 1
2 (|u|2 − ρ2), (82)

f1 = −iu∂xu
∗ − 1

2 (|u|4 − ρ4), (83)

f2 = 2i(|u|2 − ρ2)u∂xu
∗ + i|u|2u∗∂xu − 2u∂2

xu∗ + |u|4(|u|2 − ρ2). (84)

From equations (13) and (15), we have

ϕ1 → e−iθ−ikx, as x → −∞ (85)

ϕ1 → a eiθ−ikx − iρ

ζ
b eiθ+ikx, as x → ∞. (86)

It then follows from η−(−∞) = 0 and from equation (79) that q(−∞, ζ ) = 0. Since
η−(∞) = η, from equations (79) and (86) one can find that q(∞, ζ ) = ln a(ζ ) + 2iθ − iη as
x → ∞ and |ζ | → ∞. On the other hand, from the definition of the function f (x, ζ ), we
have

q(∞, ζ ) =
∫ ∞

−∞
f (x, ζ ) dx − iη. (87)

Thus, taking into account (81), one obtains

ln a(ζ ) = −2iθ − i
∞∑

n=0

In

ζ 2n
, (88)

where

In =
∫ ∞

−∞
fn(x) dx (89)

are integrals of motion. As usual, expanding (37) in power series with respect to 1/ζ and
using (88), one can explicitly express the integrals of motion in terms of discrete (solitonic)
and continuous scattering data. In particular, for I0 we get equation (38), and for I1 we have

I1 = i
N∑

j=1

[
ρ4

(
1

ζ 2
j

− 1

ζ ∗2
j

)
+

(
ζ ∗2
j − ζ 2

j

)]
+ i

M∑
k=1

(
ζ ∗2
k − ζ 2

k

) − 1

2π

∫
�

µ ln(1 − |b(µ)|2) dµ.

(90)

5. Perturbation theory

In the presence of perturbations the DNLSE can be written as

i∂tu + ∂2
xu + i∂x(|u|2u) = p[u, u∗], (91)

where the perturbation is represented by the term p[u, u∗]. Equation (91) can be cast in the
matrix form

∂tU − ∂xV + [U,V ] + P = 0, (92)

where

P =
(

0 iλp
−iλp∗ 0

)
. (93)
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Then, evolution equation for the monodromy matrix S can be obtained in a way similar to that
described in [21]. As a result, we have

∂tS(t, ζ ) + i�(ζ)[σ3, S(t, ζ )] = −
∫ ∞

−∞
(M+)−1(x, t, ζ )PM−(x, t, ζ ) dx. (94)

The equations of motion for the coefficients a(t, ζ ) and b(t, ζ ) are contained in equation (94).
Taking into account that det M± = 1 + ρ2/ζ 2 and equation (12), we have

∂a

∂t
= iζ(ρ2 − ζ 2)

(ρ2 + ζ 2)

∫ ∞

−∞
(pψ2ϕ2 + p∗ψ1ϕ1) dx, (95)

∂b

∂t
− 2i�(ζ)b = − iζ(ρ2 − ζ 2)

(ρ2 + ζ 2)

∫ ∞

−∞
(pψ̄2ϕ2 + p∗ψ̄1ϕ1) dx. (96)

The expression defining the zeros ζj (t) of a(t, ζ ) is a(t, ζj (t)) = 0. Differentiating with
respect to t gives

∂ta(t, ζj (t)) +
∂ζj

∂t
a′

j = 0, (97)

where a′
j = da/dζ |ζ=ζj

. Using (95) and (97), one therefore finds

∂ζj

∂t
= − iζj

(
ρ2 − ζ 2

j

)
(
ρ2 + ζ 2

j

)
a′

j

∫ ∞

−∞
(pψ2,j ϕ2,j + p∗ψ1,j ϕ1,j ) dx, (98)

or, taking into account (27),

∂ζj

∂t
= − iζj

(
ρ2 − ζ 2

j

)
bj(

ρ2 + ζ 2
j

)
a′

j

∫ ∞

−∞

(
pψ2

2,j + p∗ψ2
1,j

)
dx, (99)

where ψ2,j , ϕ2,j , ψ1,j and ϕ1,j are the corresponding Jost solutions evaluated at ζ = ζj . The
evolution equation for bj can be obtained in a way similar to that described in [21]. As a
result, one obtains

∂bj

∂t
− 2i�(ζj )bj = − iζj

(
ρ2 − ζ 2

j

)
(
ρ2 + ζ 2

j

)
a′

j

∫ ∞

−∞

{
pϕ2

∂

∂ζ
(ϕ2 − bjψ2) + p∗ϕ1

∂

∂ζ
(ϕ1 − bjψ1)

}
dx ′,

(100)

where, after differentiating, the integrand is evaluated at ζ = ζj . Equations (95), (96), (98)
and (100) describe the evolution of the scattering data.

If p[u, u∗] is a small perturbation, one can substitute the unperturbed N-soliton Jost
solutions ψ , ψ̄ and ϕ on the right-hand side of (95), (96), (98) and (100). This yields evolution
equations for the scattering data in the lowest approximation of perturbation theory. This
procedure can be iterated to yield higher orders of perturbation theory. The appearing hierarchy
of equations is applied to an arbitrary number of solitons and, in particular, describes nontrivial
many-soliton effects in the presence of perturbations. In this paper, we restrict ourselves to the
case of one-parametric one-soliton solutions with ζ1 = ρ exp(iβ1) and substitute unperturbed
one-soliton Jost solutions (63)–(66) on the right-hand side of (95), (96), (98) and (100).
The resulting equations are the desired set describing the evolution of the scattering data (both
solitonic and continuous) in the presence of perturbations. Under this, equations (98) and (100)
correspond to the so-called adiabatic approximation, when an unperturbed instantaneous shape
of one soliton with slowly varying parameters β1 and b1 is assumed, while equations (95) and
(96) account for radiative effects. Making use of the relation between the soliton solution (61)
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Figure 2. Dependence of the soliton parameter β(t) on time for different initial β(0) and for (a)
bright and (b) dark solitons.

and the corresponding squared Jost solution evaluated at β1, the adiabatic equation for β1 can
be simplified to

∂β1

∂t
= i

4

∫ ∞

−∞
(p∗us − pu∗

s ) dx, (101)

where us is the one-parametric soliton solution (61). Note, that this equation can also be
obtained with the aid of the integral of motion I0.

6. Application

As an example of using of the present perturbation theory, we consider the case when the
perturbation term p in (91) has the diffusive form

p = iD
∂2u

∂x2
. (102)

This form of dissipative perturbation occurs for Alfvén solitons in a plasma when finite electric
conductivity (and/or ion viscosity) of the plasma is taken into account [6, 21]. The conditions
(in terms of the plasma parameters) under which the diffusive term (102) can be considered
as a small perturbation are given in [6, 21]. We consider the action of perturbation on the
one-parametric soliton (61) in the adiabatic approximation. According to this approximation,
the parameter β of the soliton (61) is considered as slowly varying in t but with the unchanged
functional shape. Then, substituting (102) into (101) and calculating integrals with us given
by (61), one can obtain

∂β

∂t
= −4Dρ2 sin β[ε sin β(cos2 β − 3)(π − 2εβ) + 2 cos β(3 − 2 cos2 β)]. (103)

Numerically found solutions of (103) for different initial values of β are shown in figures 2(a)
and (b) for bright (ε = −1) and dark (ε = 1) solitons respectively. For sufficiently small
initial β(0) 	 1, from (103) one can get a simple estimate β(t) = β(0) exp(−8Dρ2t) both
for bright and dark solitons, so that their amplitudes and velocities decrease with time. The
situation, however, changes dramatically when β(0) is not too small. Under this, the behaviour
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of bright and dark solitons is essentially different. First of all, as one can see in figure 2, dark
solitons turn out to be much more robust. Next, if the initial β exceeds the critical value
βcr = π/6 (see figure 1), then the amplitude Ad (with respect to the background) of the dark
soliton first increases with time, reaches a maximum for βcr = π/6, where Ad = ρ, and finally
decreases.

7. Conclusion

We have presented a simple approach for finding N-soliton solutions and the corresponding Jost
solutions of the DNLSE with NVBC. It is important that the exact solutions can be obtained
without explicit determining of the phase factor. The found one- and two-soliton solutions
perfectly coincide with those obtained in [15, 17], but, unlike [15, 17], our method allows us
to get solutions describing collisions between breathers, as well as collisions between pure
bright/dark solitons and breathers.

We have also developed a perturbation theory based on the IST for perturbed DNLSE
solitons. This approach fully uses the natural separation of the discrete and continuous degrees
of freedom of the unperturbed DNLSE with NVBC. We have derived evolution equations for
the scattering data (both solitonic and continuous) in the presence of perturbations. As an
application of the developed theory, we considered (in the adiabatic approximation) the action
of the diffusive-type perturbation on a single bright/dark soliton.
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